Itinai.com it company office background blured photography by 48cb21e9 ed8f 4a55 9f5b 4570e52f1cce 1
Itinai.com it company office background blured photography by 48cb21e9 ed8f 4a55 9f5b 4570e52f1cce 1

SYMBOLIC-MOE: Adaptive Mixture-of-Experts Framework for Pre-Trained LLMs

🌐 Customer Service Chat

You’re in the right place for smart solutions. Ask me anything!

Ask me anything about AI-powered monetization
Want to grow your audience and revenue with smart automation? Let's explore how AI can help.
Businesses using personalized AI campaigns see up to 30% more clients. Want to know how?

Understanding Large Language Models (LLMs)

Large language models (LLMs) possess varying skills and strengths based on their design and training. However, they often struggle to integrate specialized knowledge across different fields, which limits their problem-solving abilities compared to humans. For instance, models like MetaMath and WizardMath excel in mathematical reasoning but may lack common sense or medical knowledge. This highlights the need for frameworks that can effectively identify and select the right expert models for specific challenges.

Current Approaches to Model Specialization

Existing methods, such as Mixture-of-Experts (MoE) models, distribute tasks among multiple specialized components. Recent advancements focus on sparse approaches that activate only the most relevant experts for each input. The Sparse MoE (SMoE) method has enhanced efficiency across various tasks but requires complex model integration through joint training. Newer frameworks like Mixture-of-Agents (MoA) aim to combine LLM outputs symbolically, while multi-agent reasoning techniques, such as the Student-teacher method, allow for collaborative argument refinement.

Introducing SYMBOLIC-MOE

Researchers from UNC Chapel Hill have developed SYMBOLIC-MOE, a symbolic and text-based Mixture-of-Experts framework that enables adaptive mixing of pre-trained LLM experts. This framework focuses on specialized skills within broader domains, such as algebra in mathematics or molecular biology in biomedical reasoning. It employs a skill-based recruiting strategy to dynamically select the most relevant expert LLMs for each reasoning task, demonstrating an average improvement of 8.15% over leading multi-agent approaches.

How SYMBOLIC-MOE Works

SYMBOLIC-MOE operates in three stages: creating model profiles, selecting aggregators, and recruiting experts for answer generation during inference. To enhance efficiency, it uses an innovative batching strategy that analyzes all instances to determine necessary LLMs. This allows for intelligent grouping of problem instances, ensuring that each expert model processes relevant instances in a single batch, optimizing throughput on a single GPU while accommodating a diverse pool of 16 LLMs.

Performance and Efficiency

SYMBOLIC-MOE consistently outperforms existing models across various benchmarks, achieving significant improvements over single-model strategies and multi-agent frameworks. It demonstrates comparable performance to larger models while operating 44% faster on a single GPU than MoA, all while maintaining better accuracy.

Conclusion

SYMBOLIC-MOE represents a scalable MoE framework that effectively combines models through their symbolic outputs. It identifies required skills for specific problems and recruits agents accordingly, leading to superior performance across diverse domains without human intervention. While it offers significant advantages, it also has limitations, such as increased inference costs due to multiple model runs and reliance on a small validation set for agent profiling.

Next Steps

Explore how artificial intelligence can enhance your business processes. Identify areas for automation, assess key performance indicators (KPIs) to measure AI impact, and select tools that align with your objectives. Start with small projects to gather data and gradually expand your AI initiatives.

If you need assistance in managing AI in your business, contact us at hello@itinai.ru or connect with us on Telegram, X, and LinkedIn.


Itinai.com office ai background high tech quantum computing a 9efed37c 66a4 47bc ba5a 3540426adf41

Vladimir Dyachkov, Ph.D – Editor-in-Chief itinai.com

I believe that AI is only as powerful as the human insight guiding it.

AI Products for Business or Custom Development

AI Sales Bot

Welcome AI Sales Bot, your 24/7 teammate! Engaging customers in natural language across all channels and learning from your materials, it’s a step towards efficient, enriched customer interactions and sales

AI Document Assistant

Unlock insights and drive decisions with our AI Insights Suite. Indexing your documents and data, it provides smart, AI-driven decision support, enhancing your productivity and decision-making.

AI Customer Support

Upgrade your support with our AI Assistant, reducing response times and personalizing interactions by analyzing documents and past engagements. Boost your team and customer satisfaction

AI Scrum Bot

Enhance agile management with our AI Scrum Bot, it helps to organize retrospectives. It answers queries and boosts collaboration and efficiency in your scrum processes.

AI Agents

AI news and solutions