-
dbt Core, Snowflake, and GitHub Actions: pet project for Data Engineers
This pet project for Data/Analytics Engineers involves using dbt Core, Snowflake, Fivetran, and GitHub Actions to build an end-to-end data lifecycle from Google Calendar to Snowflake Dashboard. It includes steps for data extraction, transformation, storage, and visualization, offering a practical experience with modern data stack tools.
-
Generative AI function GENERATE_TEXT in BigQuery
BigQuery’s GENERATE_TEXT function enables SQL-oriented data professionals to conduct NLP tasks like sentiment analysis and entity extraction in BigQuery. It uses Vertex AI’s LLM and requires knowledge of SQL and prompt structuring. The function supports various tasks and accommodates varied responses through parameters like temperature, max_output_tokens, top_k, and top_p. The post includes a hands-on guide…
-
Please Use Streaming Workload to Benchmark Vector Databases
Static workload benchmarks are insufficient for evaluating ANN indexes in vector databases because they focus only on recall and query performance, overlooking crucial aspects like indexing performance and memory usage. The author advocates for streaming workload benchmarks, showcasing new insights into recall stability and performance by comparing HNSWLIB and DiskANN under a streaming workload. The…
-
A Requiem for the Transformer?
The article discusses whether the Transformer, a dominant AI model, will continue to lead or be replaced. Transformers are effective in various AI subdomains but face challenges like computational costs and data volume requirements. Industry bureaucracy slows down innovation while open-source rapidly progresses. The transformer’s dominance may be challenged by new models capable of in-context…
-
Adaptive Weight Decay
The proposed adaptive weight decay method automatically adjusts the weight decay hyper-parameter during training to improve adversarial robustness and counter robust overfitting, without needing extra data, by dynamically basing it on classification and regularization loss gradients.
-
KAIST Researchers Introduce Quatro++: A Robust Global Registration Framework Exploiting Ground Segmentation for Loop Closing in LiDAR SLAM
Researchers from KAIST developed Quatro++, which improves LiDAR SLAM by tackling sparsity and degeneracy through ground segmentation. It achieves better loop closing, precise mappings, and outperforms learning-based methods. Quatro++ enhances robust registration for ground vehicles and shows high success on the KITTI dataset, making it highly effective and versatile for both LiDAR and INS systems.
-
This AI Research Presents a Physics-Based Deep Learning for Predicting IFP and Liposome Accumulation
Researchers introduced a Physics-informed deep learning model to predict intratumoral fluid pressure and liposome accumulation, enhancing cancer treatment strategies. The model aims for accurate drug distribution insights, addressing inconsistencies in existing nanotherapeutic approaches and improving personalized therapy design. This marks a significant advancement in understanding tumor dynamics.
-
4M: Massively Multimodal Masked Modeling
This paper introduces a versatile multimodal training scheme named 4M, which uses a unified Transformer encoder-decoder to handle various input/output modalities such as text, images, and semantic data, aiming to achieve a broad functionality similar to large language models in computer vision.
-
Neural Information Processing Systems (NeurIPS) 2023
Apple is sponsoring the in-person NeurIPS conference in New Orleans from December 10-16, fostering research exchange on neural information processing in various disciplines. The summary doesn’t include Apple’s specific workshop and event schedules.
-
Boosting developer productivity: How Deloitte uses Amazon SageMaker Canvas for no-code/low-code machine learning
AWS’s suite of low-code and no-code ML tools, such as Amazon SageMaker Canvas, enables rapid, cost-effective machine learning model development without requiring coding expertise. Deloitte uses these tools to expedite project delivery and take on more clients, increasing accessibility and standardization while reducing time and costs, resulting in roughly 30-40% productivity gains in ML development…