-
2,778 researchers weigh in on AI risks – what do we learn from their responses?
A survey of 2,700 AI researchers revealed varied opinions on AI risks. Notably, 58% foresee potential catastrophic outcomes, while others predict AI mastering tasks by 2028 and surpassing human performance by 2047. Immediate concerns like deep fakes and misinformation also trouble over 70% of researchers. Balancing both short-term and long-term AI risks is highlighted.
-
Generating value from enterprise data: Best practices for Text2SQL and generative AI
Generative AI has revolutionized AI, finding applications in text generation, code generation, summarization, and more. One evolving area is natural language processing (NLP) for intuitive SQL queries, aiming to make database querying more accessible to non-technical users. Key considerations include prompt engineering, architecture patterns, and optimization for efficient text-to-SQL systems using Large Language Models (LLMs).…
-
Promotion Forecasting: Case Study with a Retail Giant
Using machine learning, NLP, and deep domain knowledge, Auchan Retail International achieved an impressive 18% reduction in out-of-stock items and overstock across national operations in just one year. Their dual-model strategy, extensive feature engineering, and close collaboration with stakeholders led to substantial operational improvements and efficiency in retail forecasting.
-
Optimization or Architecture: How to Hack Kalman Filtering
The paper discusses the superiority of Kalman Filter (KF) over neural networks in some cases and the need to optimize KF parameters. Despite its 60-year-old linear architecture, the KF outperformed a fancy neural network after parameter optimization. The study emphasizes the importance of optimizing KF and not relying on its assumptions, offering a simple training…
-
The Secret To Creating Successful Data Stories, Not Trashboards
The article emphasizes the shift from creating traditional dashboards to storytelling with data, highlighting the need for more engaging and impactful communication of insights. It stresses the importance of framing questions, collecting relevant data, and structuring the data story in various engaging formats. The piece concludes with a call to embrace data storytelling for better…
-
Google and MIT Researchers Introduce Synclr: A Novel AI Approach for Learning Visual Representations Exclusively from Synthetic Images and Synthetic Captions without any Real Data
Google and MIT researchers propose SynCLR, a novel AI approach for visual representation learning using synthetic images and captions. The method leverages generative models to synthesize large-scale training data, demonstrating superior performance to existing methods. The team highlights potential improvements and invites further research. For more details, refer to the original Paper and Github.
-
Meet Vald: An Open-Sourced, Highly Scalable Distributed Vector Search Engine
Vald is a cloud-native, open-source distributed vector search engine addressing challenges in large-scale similarity searches. Its features include distributed indexing, auto-indexing with backups, custom filtering, and horizontal scaling, making it resilient and versatile. Vald offers lightning-fast search on billions of vectorized data points, supporting multiple languages through gRPC. It’s a vital tool for advanced unstructured…
-
Microsoft announces dedicated “Copilot” button for new keyboards
Microsoft is introducing an era of AI PCs with a new “Copilot” key on Windows 11 keyboards, set to debut on upcoming devices, including Surface products. The ribbon-like key directly accesses an AI chatbot via Bing, providing various capabilities like text work, app integration, and personal data security. Other computer manufacturers will also adopt the…
-
How to Cut RAG Costs by 80% Using Prompt Compression
The text discusses techniques to improve the efficiency of large language models (LLMs) through prompt compression, focusing on methods such as AutoCompressors and LongLLMLingua. The goal is to reduce inference costs and enable faster and accurate responses. The article compares different compression methods and concludes that LongLLMLingua shows promise for prompt compression in applications like…
-
Shaping the future of advanced robotics
AutoRT, SARA-RT, and RT-Trajectory expand on our previous Robotics Transformers to improve robots’ decision-making speed, understanding, and navigation in diverse environments.