IBM Researchers ACPBench: An AI Benchmark for Evaluating the Reasoning Tasks in the Field of Planning

IBM Researchers ACPBench: An AI Benchmark for Evaluating the Reasoning Tasks in the Field of Planning

Understanding LLMs and Their Role in Planning

Large Language Models (LLMs) are becoming increasingly important as various industries explore artificial intelligence for better planning and decision-making. These models, particularly generative and foundational ones, are essential for performing complex reasoning tasks. However, we still need improved benchmarks to evaluate their reasoning and decision-making capabilities effectively.

Challenges in Evaluating LLMs

Despite advancements, validating these models remains difficult due to their rapid evolution. For instance, even if a model checks all the boxes for a goal, it doesn’t guarantee actual planning abilities. Additionally, real-world scenarios often present multiple possible plans, complicating the evaluation process. Researchers worldwide are focused on enhancing LLMs for effective planning, highlighting the need for robust benchmarks to determine their reasoning capabilities.

Introducing ACPBench

ACPBench is a comprehensive evaluation benchmark for LLM reasoning developed by IBM Research. It consists of seven reasoning tasks across 13 planning domains and includes:

  • Applicability: Identifies valid actions in specific situations.
  • Progression: Analyzes the outcome of an action or change.
  • Reachability: Assesses whether the end goal can be achieved through various actions.
  • Action Reachability: Identifies prerequisites needed to carry out specific functions.
  • Validation: Evaluates if a sequence of actions is valid and achieves the goal.
  • Justification: Determines if an action is necessary.
  • Landmarks: Identifies necessary subgoals to reach the main goal.

Unique Features of ACPBench

Unlike previous benchmarks limited to a few domains, ACPBench generates datasets using the Planning Domain Definition Language (PDDL). This approach allows for the creation of diverse problems without human input.

Testing and Results

ACPBench was tested on 22 open-source and advanced LLMs, including well-known models like GPT-4o and LLAMA. Results showed that even the top models struggled with certain tasks. For example, GPT-4o had an average accuracy of only 52% on planning tasks. However, through careful prompt crafting and fine-tuning, smaller models like Granite-code 8B achieved performance comparable to larger models.

Key Takeaway

The findings indicate that LLMs generally underperform in planning tasks, regardless of their size. Yet, with appropriate techniques, their capabilities can be significantly enhanced.

Get Involved and Stay Updated

For more insights, check out our Paper, GitHub, and Project. Follow us on Twitter, and join our Telegram Channel and LinkedIn Group. If you enjoy our work, consider subscribing to our newsletter and joining our ML SubReddit community of over 50k members.

Upcoming Event

RetrieveX: The GenAI Data Retrieval Conference on Oct 17, 2023.

Enhance Your Business with AI

To ensure your company stays competitive, consider utilizing IBM Researchers’ ACPBench for planning evaluation. Here’s how:

  • Identify Automation Opportunities: Find customer interaction points to enhance with AI.
  • Define KPIs: Ensure your AI initiatives positively impact business outcomes.
  • Select an AI Solution: Choose tools that fit your needs and allow for customization.
  • Implement Gradually: Start small, collect data, and expand AI use carefully.

For AI KPI management advice, contact us at hello@itinai.com. For ongoing insights into leveraging AI, follow us on Telegram or @itinaicom.

Discover how AI can transform your sales processes and customer engagement by visiting itinai.com.

List of Useful Links:

AI Products for Business or Custom Development

AI Sales Bot

Welcome AI Sales Bot, your 24/7 teammate! Engaging customers in natural language across all channels and learning from your materials, it’s a step towards efficient, enriched customer interactions and sales

AI Document Assistant

Unlock insights and drive decisions with our AI Insights Suite. Indexing your documents and data, it provides smart, AI-driven decision support, enhancing your productivity and decision-making.

AI Customer Support

Upgrade your support with our AI Assistant, reducing response times and personalizing interactions by analyzing documents and past engagements. Boost your team and customer satisfaction

AI Scrum Bot

Enhance agile management with our AI Scrum Bot, it helps to organize retrospectives. It answers queries and boosts collaboration and efficiency in your scrum processes.

AI news and solutions

  • SmolDocling: IBM and Hugging Face’s 256M Open-Source Vision Language Model for Document OCR

    Challenges in Document Conversion Converting complex documents into structured data has been a significant challenge in computer science. Traditional methods, such as ensemble systems and large foundational models, often face issues like fine-tuning difficulties, generalization problems, hallucinations, and high computational costs. Ensemble systems may excel in specific tasks but struggle to generalize due to reliance…

  • Building a RAG System with FAISS and Open-Source LLMs

    “`html Introduction to Retrieval-Augmented Generation (RAG) Retrieval-Augmented Generation (RAG) is a robust methodology that enhances the capabilities of large language models (LLMs) by merging their creative generation skills with retrieval systems’ factual accuracy. This integration addresses a common issue in LLMs: hallucination, or the generation of false information. Business Applications Implementing RAG can significantly improve…

  • MemQ: Revolutionizing Knowledge Graph Question Answering with Memory-Augmented Techniques

    Introduction to Knowledge Graph Question Answering Large Language Models (LLMs) have demonstrated significant capabilities in Knowledge Graph Question Answering (KGQA) by utilizing planning and interactive strategies to query knowledge graphs. Many existing methods depend on SPARQL-based tools for information retrieval, allowing models to provide precise answers. Some techniques enhance the reasoning abilities of LLMs via…

  • ByteDance Unveils DAPO: Open-Source LLM Reinforcement Learning System

    Advancements in Reinforcement Learning for Large Language Models Reinforcement Learning (RL) is crucial for enhancing the reasoning capabilities of Large Language Models (LLMs), enabling them to tackle complex tasks. However, the lack of transparency in training methodologies from major industry players has hindered reproducibility and slowed scientific progress. Introduction of DAPO Researchers from ByteDance, Tsinghua…

  • Revolutionizing Voice AI: Speech-to-Speech Foundation Models for Multilingual Interactions

    “`html Introduction to Speech-to-Speech Foundation Models At NVIDIA GTC25, Gnani.ai experts introduced significant advancements in voice AI, focusing on Speech-to-Speech Foundation Models. This approach aims to eliminate the challenges posed by traditional voice AI systems, leading to seamless, multilingual, and emotionally intelligent voice interactions. Limitations of Traditional Voice AI Architectures Current voice AI systems typically…

  • Lowe’s Leads Retail Innovation with AI in Personalized Shopping and Customer Support

    Lowe’s AI Innovation Strategy Lowe’s, a leading home improvement retailer with 1,700 stores and 300,000 associates, is at the forefront of AI innovation. In a recent interview at Nvidia GTC25, Chandu Nair, Senior VP of Data, AI, and Innovation at Lowe’s, shared the company’s vision for leveraging AI to enhance customer experience and improve operational…

  • Emerging Trends in Machine Translation: Leveraging Large Reasoning Models

    Transforming Machine Translation with Large Reasoning Models Machine Translation (MT) is essential for global communication, allowing automatic text translation between languages. Neural Machine Translation (NMT) has advanced this field using deep learning to understand complex language patterns. However, challenges remain, especially in translating idioms, handling low-resource languages, and ensuring coherence in longer texts. Advancements with…

  • R1-Onevision: Advancing Multimodal Reasoning with Cross-Modal Formalization

    Understanding Multimodal Reasoning Multimodal reasoning integrates visual and textual data to enhance machine intelligence. Traditional AI models are proficient in processing either text or images, but they often struggle to reason across both formats. Analyzing visual elements like charts, graphs, and diagrams alongside text is essential in fields such as education, scientific research, and autonomous…

  • VisualWebInstruct: Enhancing Vision-Language Models with a Large-Scale Multimodal Reasoning Dataset

    Introduction to Visual Language Models (VLMs) Visual language models (VLMs) have made significant strides in perception-driven tasks like visual question answering and document-based visual reasoning. However, their performance in reasoning-intensive tasks is limited by the lack of high-quality, diverse training datasets. Challenges in Current Multimodal Datasets Existing multimodal reasoning datasets face several issues: some are…

  • Manify: A Revolutionary Python Library for Non-Euclidean Representation Learning

    Advancements in Non-Euclidean Representation Learning Machine learning is evolving beyond traditional methods, exploring more complex data representations. Non-Euclidean representation learning is a cutting-edge field focused on capturing the geometric properties of data through advanced methods like hyperbolic and spherical embeddings. These techniques are particularly effective for modeling structured data, networks, and hierarchies more efficiently than…

  • Build an OCR App in Google Colab with OpenCV and Tesseract-OCR

    Introduction to Optical Character Recognition (OCR) Optical Character Recognition (OCR) is a technology that transforms images of text into machine-readable data. As the demand for automated data extraction increases, OCR tools have become vital for various applications, including document digitization and information extraction from scanned images. Building an OCR Application This guide will help you…

  • Archetypal SAE: Enhancing Stability in Concept Extraction for Vision Models

    Understanding the Challenges of Artificial Neural Networks Artificial Neural Networks (ANNs) have significantly advanced computer vision, but their lack of transparency poses challenges in areas that require accountability and regulatory compliance. This opacity limits their use in critical applications where understanding decision-making is crucial. The Need for Explainable AI Researchers are keen to comprehend the…

  • FoundationStereo: A Breakthrough Zero-Shot Stereo Matching Model for Accurate Depth Estimation

    Stereo Depth Estimation: A Key to Advanced Technologies Stereo depth estimation is essential in computer vision, enabling machines to determine depth from two images. This technology is crucial for fields such as autonomous driving, robotics, and augmented reality. However, many stereo-matching models require specific adjustments to perform accurately in different environments. Challenges in Stereo Depth…

  • Groundlight Launches Open-Source AI Framework for Visual Reasoning Agents

    Challenges in Visual Language Models (VLMs) Modern VLMs face difficulties with complex visual reasoning tasks, where simply understanding an image is not enough. Recent improvements in text-based reasoning have not been matched in the visual domain. VLMs often struggle to combine visual and textual information for logical deductions, revealing a significant gap in their capabilities.…

  • Cohere Launches Command A: 111B Parameter AI Model with 256K Context Length and 50% Cost Savings for Enterprises

    Introduction to AI Models in Business Large Language Models (LLMs) are essential for conversational AI, content creation, and automation in businesses. However, achieving a balance between performance and computational efficiency remains a challenge, particularly for smaller enterprises. The development of cost-effective AI solutions is crucial to meet this demand. Challenges in AI Model Training and…

  • Dynamic Tanh DyT: Simplifying Normalization in Transformers

    Normalization Layers in Neural Networks Normalization layers are essential in modern neural networks. They help improve optimization by stabilizing gradient flow, reducing sensitivity to weight initialization, and smoothing the loss landscape. Since the introduction of batch normalization in 2015, various techniques have been developed, with layer normalization (LN) becoming particularly important in Transformer models. Their…

  • Build an AI-Powered PDF Interaction System in Google Colab with Gemini Flash 1.5

    Building an AI-Powered PDF Interaction System This tutorial outlines the steps to create an AI-driven PDF interaction system using Google Colab, Gemini Flash 1.5, PyMuPDF, and the Google Generative AI API. By utilizing these technologies, users can upload a PDF, extract its text, and ask questions to receive intelligent responses. Step 1: Install Required Dependencies…

  • SYMBOLIC-MOE: Adaptive Mixture-of-Experts Framework for Pre-Trained LLMs

    Understanding Large Language Models (LLMs) Large language models (LLMs) possess varying skills and strengths based on their design and training. However, they often struggle to integrate specialized knowledge across different fields, which limits their problem-solving abilities compared to humans. For instance, models like MetaMath and WizardMath excel in mathematical reasoning but may lack common sense…

  • PC-Agent: Hierarchical Multi-Agent Framework for Complex PC Task Automation

    Introduction to Multi-modal Large Language Models (MLLMs) Multi-modal Large Language Models (MLLMs) have advanced significantly, evolving into multi-modal agents that assist humans in various tasks. However, when it comes to PC environments, these agents face unique challenges compared to those used in smartphones. Challenges in GUI Automation for PCs PCs have complex interactive elements, often…

  • ReasonGraph: A Web Platform for Visualizing and Analyzing LLM Reasoning Processes

    Enhancing Reasoning Capabilities in AI with ReasonGraph Reasoning capabilities are crucial for Large Language Models (LLMs), yet understanding their complex processes can be challenging. While LLMs can produce detailed reasoning outputs, the absence of visual aids complicates evaluation and improvement efforts. This issue manifests in three key ways: Increased cognitive load for users analyzing intricate…