Itinai.com hyperrealistic mockup of a branding agency website 406437d4 4cdd 41bb aaa1 0ce719686930 0
Itinai.com hyperrealistic mockup of a branding agency website 406437d4 4cdd 41bb aaa1 0ce719686930 0

High-Performance Financial Analytics with Polars: Optimize Data Pipelines for Analysts

Understanding the Target Audience

The primary audience for this article includes data analysts, data scientists, and business intelligence professionals, particularly those working in finance or related sectors. These individuals often grapple with challenges such as:

  • Efficiently handling large volumes of financial data.
  • Developing performant data processing pipelines that maintain low memory usage.
  • Implementing advanced analytics without sacrificing speed.

Their ultimate goals revolve around improving data processing efficiency, utilizing advanced analytics techniques, and enhancing their proficiency with modern data tools and libraries. They seek technical specifications, real-world applications, and best practices in data analytics and machine learning, preferring straightforward explanations supported by examples and code snippets.

Creating the Financial Analytics Pipeline

To demonstrate the capabilities of Polars, we will create a synthetic financial time series dataset. This dataset simulates daily stock data for major companies such as AAPL and TSLA and includes essential market features like:

  • Price
  • Volume
  • Bid-ask spread
  • Market cap
  • Sector

We will generate 100,000 records using NumPy, creating a realistic foundation for our analytics pipeline.

Setting Up the Environment

To begin, we need to import the necessary libraries:

import polars as pl
import numpy as np
from datetime import datetime, timedelta

If Polars isn’t installed, we can include a fallback installation step:

try:
    import polars as pl
except ImportError:
    import subprocess
    subprocess.run(["pip", "install", "polars"], check=True)
    import polars as pl

Generating the Synthetic Dataset

We will generate a rich synthetic financial dataset as follows:

np.random.seed(42)
n_records = 100000
dates = [datetime(2020, 1, 1) + timedelta(days=i//100) for i in range(n_records)]
tickers = np.random.choice(['AAPL', 'GOOGL', 'MSFT', 'TSLA', 'AMZN'], n_records)

data = {
    'timestamp': dates,
    'ticker': tickers,
    'price': np.random.lognormal(4, 0.3, n_records),
    'volume': np.random.exponential(1000000, n_records).astype(int),
    'bid_ask_spread': np.random.exponential(0.01, n_records),
    'market_cap': np.random.lognormal(25, 1, n_records),
    'sector': np.random.choice(['Tech', 'Finance', 'Healthcare', 'Energy'], n_records)
}

Once we have our dataset, we can load it into a Polars LazyFrame:

lf = pl.LazyFrame(data)

Building the Analytics Pipeline

Next, we enhance our dataset by adding time-based features and applying advanced financial indicators:

result = (
    lf
    .with_columns([
        pl.col('timestamp').dt.year().alias('year'),
        pl.col('timestamp').dt.month().alias('month'),
        pl.col('timestamp').dt.weekday().alias('weekday'),
        pl.col('timestamp').dt.quarter().alias('quarter')
    ])
    ...
)

We then filter the dataset and perform grouped aggregations to extract key financial statistics:

.filter(
    (pl.col('price') > 10) &
    (pl.col('volume') > 100000) &
    (pl.col('sma_20').is_not_null())
)
.group_by(['ticker', 'year', 'quarter'])
.agg([
    pl.col('price').mean().alias('avg_price'),
    ...
])

Utilizing lazy evaluation allows us to chain complex transformations efficiently, maximizing performance while minimizing memory usage.

Collecting and Analyzing Results

After executing the pipeline, we can collect the results into a DataFrame:

df = result.collect()

We can analyze the top 10 quarters based on total dollar volume:

print(df.sort('total_dollar_volume', descending=True).head(10).to_pandas())

Advanced Analytics and SQL Integration

For higher-level insights, we can perform aggregation by ticker:

pivot_analysis = (
    df.group_by('ticker')
    ...
)

Polars’ SQL interface allows us to run familiar SQL queries over our DataFrames:

sql_result = pl.sql("""
    SELECT
        ticker,
        AVG(avg_price) as mean_price,
        ...
    FROM df
    WHERE year >= 2021
    GROUP BY ticker
    ORDER BY total_volume DESC
""", eager=True)

This blend of functional expressions and SQL queries showcases Polars’ flexibility as a data analytics tool.

Concluding Remarks

In conclusion, we have demonstrated how Polars’ lazy API optimizes complex analytics workflows, from raw data ingestion to advanced scoring and aggregation. By leveraging Polars’ powerful features, we created a high-performance financial analytics pipeline suitable for scalable applications in enterprise settings. For further reading and research, please refer to the original sources listed above.

Export options include:

  • Parquet (high compression): df.write_parquet('data.parquet')
  • Delta Lake: df.write_delta('delta_table')
  • JSON streaming: df.write_ndjson('data.jsonl')
  • Apache Arrow: df.to_arrow()

This tutorial has showcased the full-circle capabilities of Polars in executing high-performance analytics efficiently.

Itinai.com office ai background high tech quantum computing 0002ba7c e3d6 4fd7 abd6 cfe4e5f08aeb 0

Vladimir Dyachkov, Ph.D
Editor-in-Chief itinai.com

I believe that AI is only as powerful as the human insight guiding it.

Unleash Your Creative Potential with AI Agents

Competitors are already using AI Agents

Business Problems We Solve

  • Automation of internal processes.
  • Optimizing AI costs without huge budgets.
  • Training staff, developing custom courses for business needs
  • Integrating AI into client work, automating first lines of contact

Large and Medium Businesses

Startups

Offline Business

100% of clients report increased productivity and reduced operati

AI news and solutions