Itinai.com user using ui app iphone15 closeup hands photo can a757815c 1405 470a 99ad 8da436e99421 0
Itinai.com user using ui app iphone15 closeup hands photo can a757815c 1405 470a 99ad 8da436e99421 0

Build an Interactive Bilingual Chat Interface with Meraj-Mini AI

Bilingual Chat Assistant Implementation

In this tutorial, we will implement a Bilingual Chat Assistant using the Meraj-Mini model from Arcee AI. The assistant will be seamlessly deployed on Google Colab using T4 GPU, demonstrating the capabilities of open-source language models and offering a hands-on experience in deploying advanced AI solutions within free cloud resources.

Tools Required

We will utilize the following tools:

  • Arcee’s Meraj-Mini model
  • Transformers library for model loading and tokenization
  • Accelerate and bitsandbytes for efficient quantization
  • PyTorch for deep learning computations
  • Gradio for creating an interactive web interface

Enable GPU Acceleration

Start by enabling GPU acceleration and installing necessary libraries:

        !nvidia-smi --query-gpu=name,memory.total --format=csv
        !pip install -qU transformers accelerate bitsandbytes
        !pip install -q gradio
    

Model Configuration

Next, we will configure settings for 4-bit quantization and load the model:

        import torch
        from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig

        quant_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True
        )

        model = AutoModelForCausalLM.from_pretrained(
            "arcee-ai/Meraj-Mini",
            quantization_config=quant_config,
            device_map="auto"
        )
        tokenizer = AutoTokenizer.from_pretrained("arcee-ai/Meraj-Mini")
    

Creating the Chat Pipeline

We will set up a text generation pipeline suitable for chat interactions:

        chat_pipeline = pipeline(
            "text-generation",
            model=model,
            tokenizer=tokenizer,
            max_new_tokens=512,
            temperature=0.7,
            top_p=0.9,
            repetition_penalty=1.1,
            do_sample=True
        )
    

Defining Chat Functions

We will create two functions to manage chat interactions:

        def format_chat(messages):
            prompt = ""
            for msg in messages:
                prompt += f"<|im_start|>{msg['role']}n{msg['content']}<|im_end|>n"
            prompt += "<|im_start|>assistantn"
            return prompt

        def generate_response(user_input, history=[]):
            history.append({"role": "user", "content": user_input})
            formatted_prompt = format_chat(history)
            output = chat_pipeline(formatted_prompt)[0]['generated_text']
            assistant_response = output.split("<|im_start|>assistantn")[-1].split("<|im_end|>")[0]
            history.append({"role": "assistant", "content": assistant_response})
            return assistant_response, history
    

Building the Chat Interface

Finally, we will create a user interface for the chat using Gradio:

        import gradio as gr

        with gr.Blocks() as demo:
            chatbot = gr.Chatbot()
            msg = gr.Textbox(label="Message")
            clear = gr.Button("Clear History")
        
            def respond(message, chat_history):
                response, _ = generate_response(message, chat_history.copy())
                return response, chat_history + [(message, response)]

            msg.submit(respond, [msg, chatbot], [msg, chatbot])
            clear.click(lambda: None, None, chatbot, queue=False)

        demo.launch(share=True)
    

Next Steps

Explore how AI can transform your business processes. Seek opportunities for automation and identify key performance indicators (KPIs) to measure the effectiveness of your AI solutions. Start with small projects, gather data, and expand gradually.

If you need further assistance in managing AI within your business, please contact us:


Itinai.com office ai background high tech quantum computing 0002ba7c e3d6 4fd7 abd6 cfe4e5f08aeb 0

Vladimir Dyachkov, Ph.D
Editor-in-Chief itinai.com

I believe that AI is only as powerful as the human insight guiding it.

Unleash Your Creative Potential with AI Agents

Competitors are already using AI Agents

Business Problems We Solve

  • Automation of internal processes.
  • Optimizing AI costs without huge budgets.
  • Training staff, developing custom courses for business needs
  • Integrating AI into client work, automating first lines of contact

Large and Medium Businesses

Startups

Offline Business

100% of clients report increased productivity and reduced operati

AI news and solutions