Itinai.com llm large language model chaos 50 profile 2aqn a3f764d1 e8c1 438e b805 7da6d5d96892 0
Itinai.com llm large language model chaos 50 profile 2aqn a3f764d1 e8c1 438e b805 7da6d5d96892 0

A Systematic Literature Review: Optimization and Acceleration Techniques for LLMs

A Systematic Literature Review: Optimization and Acceleration Techniques for LLMs

Practical Solutions and Value of Large Language Models (LLMs)

Challenges in Large-Scale Language Models

Large language models (LLMs) in natural language processing (NLP) pose challenges in computational resources and memory usage, limiting accessibility for researchers.

Optimization and Acceleration Techniques

Recent studies have developed frameworks, libraries, and techniques to overcome challenges in training and managing large-scale LLMs, providing valuable insights for researchers seeking optimal language models.

Systematic Literature Review (SLR)

Researchers conducted a comprehensive SLR analyzing 65 publications, focusing on optimizing and accelerating LLMs without sacrificing accuracy, providing a taxonomy for improving LLMs based on three classes: training, inference, and system serving.

Frameworks and Libraries for LLM Training

Key frameworks and libraries such as GPipe, ByteTransformer, Megatron-LM, LightSeq2, and CoLLiE help overcome LLM training limitations, achieving state-of-the-art results on NLP tasks with high throughput.

Challenges in LLM Inference and Practical Solutions

LLM inference frameworks and libraries address challenges such as computational expenses, resource constraints, and the requirement of balance speed, accuracy, and resource utilization through hardware specialization, resource optimization, algorithmic improvements, and distributed inference.

Optimization Techniques for LLMs

Diverse optimization techniques for LLMs have been developed, including algorithmic, model partitioning, fine-tuning for efficiency, scheduler optimization, and other optimizations such as size reduction, parallelism strategies, memory optimization, heterogeneous optimization, and automatic parallelism.

Limitations and Future Research

While the SLR on large language model optimization techniques is thorough, it has some limitations, emphasizing the need for future research to fully realize the potential of LLM optimization techniques.

AI Solutions and Business Impact

AI solutions can redefine work processes, identify automation opportunities, define KPIs, select appropriate tools, and implement AI gradually to stay competitive and evolve companies.

Connect with Us

For AI KPI management advice and continuous insights into leveraging AI, connect with us at hello@itinai.com and stay tuned on our Telegram t.me/itinainews or Twitter @itinaicom.

List of Useful Links:

Itinai.com office ai background high tech quantum computing 0002ba7c e3d6 4fd7 abd6 cfe4e5f08aeb 0

Vladimir Dyachkov, Ph.D
Editor-in-Chief itinai.com

I believe that AI is only as powerful as the human insight guiding it.

Unleash Your Creative Potential with AI Agents

Competitors are already using AI Agents

Business Problems We Solve

  • Automation of internal processes.
  • Optimizing AI costs without huge budgets.
  • Training staff, developing custom courses for business needs
  • Integrating AI into client work, automating first lines of contact

Large and Medium Businesses

Startups

Offline Business

100% of clients report increased productivity and reduced operati

AI news and solutions